De la Structure aux propriétés physiques de la matière Tp 18

Extraction liquide-liquide d'un soluté

Constitution et

Transformation de

la matière

Séquence 9

Objectif du Tp: Comprendre le choix d'un solvant pour extraire une espèce chimique donnée.

<u>Problème</u>: A l'issu d'une séance de travaux pratique, un technicien de laboratoire récupère une solution aqueuse où sont mélangés du Sulfate de cuivre et du Diiode. Ces 2 espèces chimiques ne subissant pas les mêmes traitements de recyclage; il doit les séparer et les placer dans 2 bidons de récupération différents, pour que le centre de traitement des déchets chimiques veuille bien les accepter.

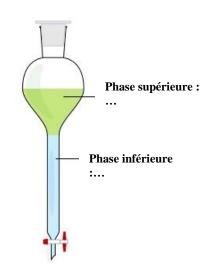
Les données :			
<u>Solubilité</u>	Sulfate de cuivre (Cu SO ₄)	e Diiode (I ₂)	
Dans l'eau	très grande	faible	
Dans le cyclohexane	nulle	très grande	
Dans l'éthanol	faible	grande	

<u>Les solvants</u>	Eau	Cyclohexane	Éthanol
Formule brute	H ₂ O	forme cyclique C_6H_{12}	C ₂ H ₅ OH
Miscibilité dans l'eau		nulle	Très grande
Densité	1,00	0,79	0,78
θ de fusion (en °C)	0,0	6,47	- 114
θ d'ébullition (en °C)	100	80,8	79,0

I. Etude des propriétés électrostatiques des solvants et des solutés.

- 1. Représenter les schémas de Lewis des molécules d'Ethanol et de Cyclohexane.
- 2. Justifier les doublets liants et non liants des différents atomes de ces 2 molécules.
- 3. Indiquer et justifier la géométrie des liaisons autour de :
 - l'atome d'Oxygène de l'Ethanol.
 - d'un atome de Carbone du Cyclohexane.
- **4.** Indiquer et justifier laquelle de ces molécules est polaire et laquelle est apolaire.
- **5.** Comment peut-on expliquer la très grande miscibilité entre l'eau et l'éthanol ? (Préciser le(s) type(s) de liaisons intermoléculaires qui assure(nt) la cohésion du mélange eau-éthanol)
- 6. De quels types d'espèces chimiques sont constitués les 2 solutés ; Sulfate de cuivre ? et Diiode ?
- 7. Le Diiode est-il polaire ou apolaire ? (Justifier votre réponse)

II. Le protocole d'extraction.


- 1. Quel solvant va permettre de séparer les 2 espèces chimiques contenues dans la solution aqueuse récupérée par le technicien de laboratoire ? (Justifiez rigoureusement votre choix)
- **2.** Légender l'ampoule à décanter ci-contre, en indiquant quelles seront les différentes espèces chimiques présentes dans les 2 phases.
- 3. Rédiger un protocole pour réaliser cette séparation.

(Vous détaillerez notamment l'utilisation de l'ampoule à décanter) :

Faire valider votre protocole par le professeur.

III. Solubilité et propriété électrostatique d'un solvant.

- **1.** Comment peut-on expliquer la solubilité du Sulfate de cuivre dans l'eau, et même, en moindre mesure, dans l'éthanol ?
- 2. Comment expliquer la faible solubilité du Diiode dans l'eau ?
- 3. Conclusion : Quel caractère électrostatique semble devoir présenter un solvant pour pouvoir dissoudre correctement :
 - une espèce chimique polaire ?
 - une espèce chimique apolaire ?
 - un composé ionique ?

