<u>Thème 2</u> <u>Analyser et diagnostiquer</u> Act 3

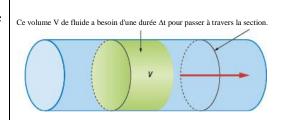
Ecoulement et débit d'un liquide <u>Débit cardiaque</u>

1ère ST2S

Maxime se repose tranquillement sur son lit. Il s'amuse à mesurer le nombre de battements de son cœur chaque minute. Il se pose alors la question suivante :

Quelle est la durée nécessaire au sang pour faire le tour complet du corps ?

Doc 1 : Débit volumique d'un écoulement.


Le débit volumique D permet de caractériser l'écoulement d'un liquide dans un tuyau. Il correspond au volume de liquide qui traverse une section de ce tuyau, par unité de temps.

Il s'exprime ainsi : $D = \frac{V}{\Delta t}$

D : débit volumique en m^3 .s⁻¹.

V: volume de liquide traversant la section pendant la durée Δt en m^3 .

 Δt : durée d'écoulement du liquide au travers de la section en secondes (s).

<u>Doc 2 :</u> Données sur le cœur.

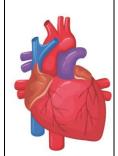
<u>Définitions</u>:

Systole : phase de contraction du cœur. Diastole : phase de relaxation du cœur.

f_c: fréquence cardiaque. Il s'agit du nombre de battements par minute.

V_{ES} : volume d'éjection systolique. Il s'agit du volume de sang éjecté par le cœur lors de la systole.

D_C: débit cardiaque. Il s'agit du volume de sang éjecté par le cœur pendant une minute.


Données numériques :

Valeurs moyennes pour un homme au repos :

 f_c = 70 battements par minute (bpm).

 $V_{ES} = 70 \text{ mL.battement}^{-1}$.

Volume total de sang dans le corps = 5 L.

- 1. Indiquer le volume de sang éjecté par le cœur à chaque battement.
- 2. En déduire la relation entre D_C, f_C et V_{ES} à l'aide des grandeurs indiquées dans le document 2.
- 3. Apporter une réponse à Maxime en faisant attention à la cohérence des unités.
- 4. Calculer le nouveau débit cardiaque D_c si le sang fait un tour complet en 45 s.