Composition d'un système chimiaue

Prélever des quantités de matière Exercices: Fiche 2

Constitution et transformation de la matière Séquence 1

Quantité de matière, masse et masse molaire.

Exercice 1: Masse molaire des atomes ou ions monoatomiques.

Calculer les masses molaires en utilisant les données. Arrondir les résultats à l'unité.

Atome	Na	Cl ⁻	Fe
Masse (en kg)	$3,80 \times 10^{-26}$	$5,90 \times 10^{-26}$	$9,30 \times 10^{-26}$

- 1. Calculer la masse molaire du sodium.
- 2. Calculer la masse molaire de l'ion chlorure.
- 3. Calculer la masse molaire du fer.

<u>Données</u>: Constante d'Avogadro $N_A = 6.02 \times 10^{23} \, \text{mol}^{-1}$.

Exercice 2 : Calcul d'une quantité de matière.

L'acide sulfamique est un composé moléculaire de formule brute H₃NSO₃. On veut connaître la quantité de matière n contenue dans une masse m = 150 g d'acide sulfamique.

- 1. Calculer la masse molaire de ce composé.
- 2. Exprimer n en fonction de m et M. Préciser les unités de chaque grandeur.
- 3. Calculer la quantité de matière contenue dans une masse m = 150 g d'acide sulfamique.

Données: masses molaires atomiques en g.mol⁻¹: M(H) = 1.0; M(N) = 14; M(S) = 32; M(O) = 16.

Exercice 3: Calcul d'une masse.

Le carbonate de sodium est un composé ionique constitué d'ions Na⁺ et CO₃²⁻. Sa formule s'écrit Na₂CO₃.

On veut connaître la masse m d'une quantité de matière $n = 2.0 \times 10^{-2}$ mol de carbonate de sodium.

- 1. Calculer la masse molaire de ce composé.
- **2.** Exprimer m en fonction de n et M.
- 3. Calculer la masse d'une quantité de matière $n = 2 \times 10^{-2}$ mol de carbonate de sodium.

Données: masses molaires atomiques en g.mol⁻¹: M(C) = 12; M(O) = 16; M(Na) = 23.

Préparation d'une solution aqueuse par dissolution d'un soluté.

Exercice 4: Une solution pour détartrer.

On prépare un volume V = 800 mL d'une solution détartrante d'acide chlorhydrique par dissolution de chlorure d'hydrogène (HCl) dans l'eau.

La concentration massique en soluté de la solution préparée est $C_m = 230 \text{ g.L}^{-1}$.

On veut connaître la masse m de soluté à dissoudre.

- 1. Nommer le soluté.
- 2. Exprimer m en fonction de C_m et du volume V de la solution. Préciser les unités de chaque grandeur.
- 3. Calculer la masse de soluté à dissoudre pour préparer cette solution.

Exercice 5 : Pour déboucher les canalisations.

Afin de déboucher la canalisation d'un évier, on souhaite fabriquer une solution aqueuse d'hydroxyde de sodium (NaOH) de concentration massique $C_m = 246 \text{ g.L}^{-1}$. Pour cela, on dispose d'une masse m = 61,5 g d'hydroxyde de sodium.

On veut connaître le volume V de la solution que l'on peut préparer.

- **1.** Exprimer V en fonction de C_m et m.
- 2. Calculer le volume de la solution préparée.

Composition d'un système chimique

Prélever des quantités de matière Exercices: Fiche 1

Constitution et transformation de la matière Séquence 1

Exercice 6 : Pour détartrer une cafetière.

On prépare un volume V = 1.2 L d'une solution d'acide sulfamique (H_3NSO_3) de concentration molaire $C = 0.50 \text{ mol.L}^{-1}$.

- 1. Calculer la quantité de matière de soluté à dissoudre pour préparer cette solution.
- 2. Calculer la masse de soluté correspondante.
- 3. Calculer la concentration massique de la solution préparée.

Donnée : $M(H_3NSO_3) = 97 \text{ g.mol}^{-1}$.

Exercice 7: Solution de glucose.

Calculer la concentration massique C_m de la solution préparée.

Préparation d'une solution aqueuse par dilution d'une solution mère.

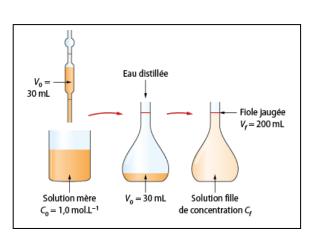
Exercice 8: Dilution d'une solution d'acide chlorhydrique.

On dispose d'une solution d'acide chlorhydrique de concentration molaire en soluté $C_0 = 2$ mol. L^{-1} .

On souhaite préparer, à partir de cette solution, un volume $V_f = 500 \text{ mL}$ d'une solution fille de concentration $C_f = 0.2 \text{ mol.L}^{-1}$.

- **1.** Calculer le rapport C_0/C_f .
- 2. En déduire combien de fois la solution mère doit être diluée.
- 3. Calculer le volume V_0 de solution mère à prélever pour préparer cette solution.

Exercice 9 : Protocole de dilution.


On prélève un volume $V_0 = 20$ mL d'une solution mère de bicarbonate de sodium de concentration massique $C_{m0} = 75$ g.L⁻¹ pour préparer une solution fille de concentration massique $C_{mf} = 15 \text{ g.L}^{-1}$.

- 1. Indiquer combien de fois la solution mère est diluée.
- 2. Calculer le volume de la solution fille préparée.
- 3. Rédiger le protocole expérimental à suivre pour réaliser cette dilution.

Exercice 10: Erreur dans le protocole.

Voici le schéma d'un protocole de dilution destiné à préparer une solution fille de concentration molaire en soluté $C_f = 0.25 \text{ mol.L}^{-1}$.

- 1. D'après ce protocole, calculer la concentration de la solution fille préparée.
- **2.** Comparer le résultat à la concentration C_f prévue au départ. Commenter.
- 3. Schématiser un protocole permettant de préparer la solution fille désirée.

